CSE525 Lec2: Recursion $0 \bigcirc 0$

3 partitions of A: U V W
Proof by induction on the length of A .
Induction hypothesis: ???

Prove that: Assuming IH, U3, V3 \& W3 are individually sorted.

Prove that: Assuming IH, all x in $\mathrm{U} 3<=$ all y in V3 <= all z in W3.

Thm: StoogeSort is correct.
Q: What is its worst-case complexity ?

$$
\begin{array}{|l|l|}
\hline 7,8,9 & 4,5,6 \\
\hline
\end{array}
$$

Prove that: Assuming IH, U3, V3 \& W3 are individually sorted.

After line 5, U1 is in increasing order, and so is V1.
After line 6, V2 is in increasing order, and so is W2.
U2 remains in increasing order.
After line 7, U3 is increasing order, and so is V3.
W3 =W2 remains in increasing order.

```
StOOGESORT(A[0..n-1]):
    if }n=2\mathrm{ and A[0]>A[1]
        swap }A[0]\leftrightarrowA[1
    else if }n>
        m=\lceil2n/3\rceil
        StoogeSort(A[0..m-1])
        StoogeSort(A[n-m..n-1])
        StoogeSort(A[0..m-1])
```

After 4.	U0	V0	W0
After 5.	U1	V1	W1=W0
After 6.	U2=U1	V2	W2
After 7.	U3	V3	W3=W2

Prove that: Assuming IH, all x in $\mathrm{U} 3<$ all y in $\mathrm{V} 3<$ all z in W3.

After line 7, since U3 and V3 are sorted, It means all e in U3 < all e' in V3.

If we could prove all e' in V3 < all e" in W3=W2, we are done.

Each e' in V 3 either belongs from $\mathrm{U} 1=\mathrm{U} 2$ or from V 2. There can be two cases.

1. If e' belongs to V 2 , since all elements in V 2 < all elements in W 2 , so, e' < all elements in W2.
2. If e' belongs to $\mathrm{U} 2=\mathrm{U} 1$, then we have few further cases.

Let min $\mathrm{V} 1=$ minimum element in V 1 . Since e^{\prime} is in $\mathrm{U} 1, \mathrm{e}^{\prime}<\min \mathrm{V} 1$.
a. If $\min \mathrm{V} 1<=$ minimum in W 2 , all elements in $\mathrm{W} 2>\min (\mathrm{W} 2)=>\min \mathrm{V} 1>e^{\prime}$
b. If $\min \mathrm{V} 1>\min (\mathrm{W} 2)$, then all of $\mathrm{V} 1>=\min \mathrm{V} 1>\min (\mathrm{W} 2)$, so W 2 should contain all elements of V 1 and $\min (\mathrm{W} 2)$. But this is a contradiction since $|\mathrm{W} 2|<=|\mathrm{V} 1|$.
Intuition
$n=10 \mathrm{~m}=7$ StoogeSort([0 ... 6]), StoogeSort([3 ... 9]), StoogeSort([0 ... 6]) U,V,W: [0 ... 2] [3 ... 6] [7 ... 9]

Generally, U,V,W : [0 ... n-m-1] [n-m ... m-1] [m ... n-1]


```
StOOGESORT(A[0..n-1]):
    if }n=2\mathrm{ and A[0]>A[1]
        swap A[0]\leftrightarrowA[1]
    else if }n>
        m=\lceil2n/3\rceil
        StoogeSort(A[0..m-1])
        StoogeSort(A[n-m..n-1])
StoogeSort(A[0..m-1])
```

After 4.	U0	Vo	Wo
After 5.	Ul	V1	W1=W0
After 6.	U2=U1	V2	W2
After 7.	U3	V3	W3=W2

